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Embeddings from deep learning 
transfer GO annotations 
beyond homology
Maria Littmann1,2,6*, Michael Heinzinger1,2,6, Christian Dallago1,2, Tobias Olenyi1 & 
Burkhard Rost1,3,4,5

Knowing protein function is crucial to advance molecular and medical biology, yet experimental 
function annotations through the Gene Ontology (GO) exist for fewer than 0.5% of all known 
proteins. Computational methods bridge this sequence-annotation gap typically through homology-
based annotation transfer by identifying sequence-similar proteins with known function or through 
prediction methods using evolutionary information. Here, we propose predicting GO terms through 
annotation transfer based on proximity of proteins in the SeqVec embedding rather than in sequence 
space. These embeddings originate from deep learned language models (LMs) for protein sequences 
(SeqVec) transferring the knowledge gained from predicting the next amino acid in 33 million protein 
sequences. Replicating the conditions of CAFA3, our method reaches an Fmax of 37 ± 2%, 50 ± 3%, and 
57 ± 2% for BPO, MFO, and CCO, respectively. Numerically, this appears close to the top ten CAFA3 
methods. When restricting the annotation transfer to proteins with < 20% pairwise sequence identity 
to the query, performance drops (Fmax BPO 33 ± 2%, MFO 43 ± 3%, CCO 53 ± 2%); this still outperforms 
naïve sequence-based transfer. Preliminary results from CAFA4 appear to confirm these findings. 
Overall, this new concept is likely to change the annotation of proteins, in particular for proteins from 
smaller families or proteins with intrinsically disordered regions.
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GO captures cell function through hierarchical ontologies.  All organisms rely on the correct func-
tioning of their cellular workhorses, namely their proteins involved in almost all roles, ranging from molecular 
functions (MF) such as chemical catalysis of enzymes to biological processes or pathways (BP), e.g., realized 
through signal transduction. Only the perfectly orchestrated interplay between proteins allows cells to perform 
more complex functions, e.g., the aerobic production of energy via the citric acid cycle requires the intercon-
nection of eight different enzymes with some of them being multi-enzyme complexes1. The Gene Ontology 
(GO)2 thrives to capture this complexity and to standardize the vocabulary used to describe protein function in 
a human- and machine-readable manner. GO separates different aspects of function into three hierarchies: MFO 
(Molecular Function Ontology), BPO (biological process ontology), and CCO, i.e. the cellular component(s) or 
subcellular localization(s) in which the protein acts.

Computational methods bridge the sequence‑annotation gap.  As the experimental determina-
tion of complete GO numbers is challenging, the gap between the number of proteins with experimentally veri-
fied GO numbers and those with known sequence but unknown function (sequence-annotation gap) remains 
substantial. For instance, UniRef1003 (UniProt3 clustered at 100% percentage pairwise sequence identity, PIDE) 
contains roughly 220  M (million) protein sequences of which fewer than 1  M have annotations verified by 
experts (Swiss-Prot3 evidence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS, or IC).

Computational biology has been bridging the sequence-annotation gap for decades4–11, based on two dif-
ferent concepts: (1) sequence similarity-based transfer (or homology-based inference) which copies the annota-
tion from one protein to another if that is sequence similar enough because proteins of similar sequence have 
similar function12. In more formal terms: given a query Q of unknown and a template T of known function 
(Ft): IF PIDE(Q,T) > threshold θ, transfer annotation Ft to Q. (2) De-novo methods predict protein function 
through machine learning5. If applicable, the first approach tends to out-perform the second13–16 although it 
largely misses discoveries17. The progress of computational methods has been monitored by CAFA (Critical 
Assessment of Functional Annotation)9,18,19, an international collaboration for advancing and assessing methods 
that bridge the sequence-annotation gap. CAFA takes place every 2–3 years with its fourth instance (CAFA4) 
currently being evaluated.

Here, we introduce a novel approach transferring annotations using the similarity of embeddings from lan-
guage models (LMs: SeqVec20 and ProtBert21) rather than the similarity of sequence. Using embedding space 
proximity has helped information retrieval in natural language processing (NLP)22–25. By learning to predict the 
next amino acid given the entire previous sequence on unlabeled data (only sequences without any phenotype/
label), e.g., SeqVec learned to extract features describing proteins useful as input to different tasks (transfer 
learning). Instead of transferring annotations from the labeled protein T with the highest percentage pairwise 
sequence identity (PIDE) to the query Q, we chose T as the protein with the smallest distance in embedding space 
(DISTemb) to Q. This distance also proxied the reliability of the prediction serving as threshold above which hits 
are considered too distant to infer annotations. Instead of picking the top hit, annotations can be inferred from 
the k closest proteins where k has to be optimized. In addition, we evaluate the influence of the type of LM used 
(SeqVec20 vs. ProtBert21). Although the LMs were never trained on GO terms, we hypothesize LM embeddings to 
implicitly encode information relevant for the transfer of annotations, i.e., capturing aspects of protein function 
because embeddings have been shown to capture rudimentary features of protein structure and function20,21,26,27.

Results and discussion
Simple embedding‑based transfer almost as good as CAFA3 top‑10.  First, we predicted GO 
terms for all 3328 CAFA3 targets using the Gene Ontology Annotation (GOA) data set GOA2017 (Methods), 
removed all entries identical to CAFA3 targets (PIDE = 100%; set: GOA2017-100) and transferred the annota-
tions of the closest hit (k = 1; closest by Euclidean distance) in this set to the query. When applying the NK 
evaluation mode (no-knowledge available for query, Methods/CAFA3), the embedding-transfer reached Fmax 
scores (Eq. 3) of 37 ± 2% for BPO (precision: P = 39 ± 2%, recall: R = 36 ± 2%, Eqs. 1/2), F1 = 50 ± 3% for MFO 
(P = 54 ± 3%, R = 47 ± 3%), and F1 = 57 ± 2% for CCO (P = 61 ± 3%, R = 54 ± 3%; Table 1, Fig. 1, Fig. S1). Errors 
were estimated through the 95% confidence intervals (± 1.96 stderr). Replacing the Euclidean by cosine distance 
(more standard amongst those working with embeddings, e.g., in NLP) changed little (Table 1; for simplicity, 
we only used Euclidean from here on). In the sense that the database with annotations to transfer (GOA2017) 
had been available before the CAFA3 submission deadline (February 2017), our predictions were directly com-
parable to CAFA319. This embedding-based annotation transfer clearly outperformed the two CAFA3 baselines 
(Fig. 1: the simple BLAST for sequence-based annotation transfer, and the Naïve method assigning GO terms 
statistically based on database frequencies, here GOA2017); it would have performed close to the top ten CAFA3 
competitors (in particular for BPO: Fig. 1) had the method competed at CAFA3. 

Performance did not change when replacing global average with maximum pooling (Table 1). While averaging 
over long proteins could lead to information loss in the resulting embeddings, we did not observe a correlation 
between performance and protein length (Fig. S2, Table S1). In order to obtain the embeddings, we processed 
query and lookup protein the same way. If those have similar function and similar length, their embeddings 
might have lost information in the same way. This loss might have “averaged out” to generate similar embeddings.

Including more neighbors (k > 1) only slightly affected Fmax (Table S2; all Fmax averages for k = 2 to k = 10 
remained within the 95% confidence interval of that for k = 1). When taking all predictions into account inde-
pendent of a threshold in prediction strength referred to as the reliability index (RI, Methods; i.e., even low 
confidence annotations are transferred), the number of predicted GO terms increased with higher k (Table S3). 
The average number of GO terms annotated per protein in GOA2017 already reached 37, 14, 9 for BPO, MFO, 
CCO, respectively. When including all predictions independent of their strength (RI) our method predicted more 
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terms for CCO and BPO than expected from this distribution even for k = 1. Only for MFO the average (11.7 
terms) predicted was slightly lower than expected for k = 1 (number of terms exploded for k > 1: Table S3). While 
precision dropped with adding terms, recall increased (Table S3). To avoid overprediction and given that k hardly 
affected Fmax, we chose k = 1. This choice might not be best in practice: considering more than one hit (k > 1) might 
help when the closest hit only contains unspecific terms. However, such a distinction will be left to expert users.

When applying the LK evaluation mode (limited-knowledge, i.e., query already has some annotation about 
function, Methods/CAFA3), the embedding-based annotation transfer reached Fmax scores of 49 ± 1%, 52 ± 2%, 

Table 1.   Performance for CAFA3 targets for simple GO annotation transfers*. *Mean Fmax values for GO 
term predictions using embeddings from two different language models (SeqVec or ProtBert) or sequence 
similarity (BLAST) for the data sets GOA2017-100 (2017), GOA2017X (2017), and GOA2020-100 (2020) used 
for annotation transfer (note: the notation ‘-100′ implies that any entry in the data set with PIDE = 100% to any 
CAFA3 protein had been removed). By default, embedding distance was assessed by Euclidean distance (Eq. 4; 
exception marked cosine), and per-residue embeddings were pooled by global average pooling (exception 
marked maximum pooling). All values were compiled for picking the single top hit (k = 1) and using the 
CAFA3 targets from the NK and full evaluation mode19. For all simple annotation transfers (embedding- and 
sequence-based), performance was higher for the more recent data sets (GOA2020 vs. GOA2017). Error 
estimates are given as 95% confidence intervals. Fmax values were computed using the CAFA3 tool18,19.

Data set Embeddings

Fmax

BPO MFO CCO

GOA2017

SeqVec 37 ± 2% 50 ± 3% 57 ± 2%

SeqVec (Cosine) 37 ± 2% 50 ± 3% 58 ± 2%

SeqVec (maximum pooling) 35 ± 2% 52 ± 3% 58 ± 2%

ProtBert 36 ± 2% 49 ± 3% 59 ± 2%

BLAST 26% 42% 46%

GOA2017X SeqVec 31 ± 2% 51 ± 3% 56 ± 2%

GOA2020

SeqVec 51 ± 2% 61 ± 3% 65 ± 2%

ProtBert 50 ± 2% 59 ± 2% 65 ± 2%

BLAST 31% 53% 58%

Figure 1.   Fmax for simplest embedding-based transfer (k = 1) and CAFA3 competitors. Using the data sets 
and conditions from CAFA3, we compared the Fmax of the simplest implementation of the embedding-based 
annotation transfer, namely the greedy (k = 1) solution in which the transfer comes from exactly one closest 
database protein (dark bar) for the three ontologies (BPO, MFO, CCO) to the top ten methods that—in contrast 
to our method—did compete at CAFA3 and to two background approaches “BLAST” (homology-based 
inference) and “Naïve” (assignment of terms based on term frequency) (lighter bars). The result shown holds 
for the NK evaluation mode (no knowledge), i.e., only using proteins that were novel in the sense that they had 
no prior annotations. If we had developed our method before CAFA3, it would have almost reached the tenth 
place for MFO and CCO, and ranked even slightly better for BPO. Error bars (for our method) marked the 95% 
confidence intervals.
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and 58 ± 3% for BPO, MFO, and CCO, respectively (Fig. S3). Thus, the embedding-based annotation transfer 
reached higher values for proteins with prior annotations (LK evaluation mode) than for novel proteins without 
any annotations (NK evaluation mode; Table 1); the same was true for the CAFA3 top-10 for which the Fmax 
scores increased even more than for our method for BPO and MFO, and less for CCO (Fig. 1, Fig. S3). In the 
LK mode, predictions are evaluated for proteins for which 1–2 GO ontologies had annotations while those for 
another ontology (or two) were added after the CAFA3 deadline9,19. While supervised training uses such labels; 
our approach did not since we had excluded all CAFA3 targets explicitly from the annotation transfer database 
(GOA2017). Thus, our method could not benefit from previous annotations, i.e., LK and NK should be identical. 
The observed differences were most likely explained by how Fmax is computed. The higher Fmax score, especially for 
BPO, might be explained by data set differences, e.g. LK average number of BPO annotations was 19 compared 
to 26 for NK. Other methods might have reached even higher by training on known annotations.

Embedding‑based transfer successfully identified distant relatives.  Embeddings condense infor-
mation learned from sequences; identical sequences produce identical embeddings: if PIDE(Q,T) = 100%, then 
DISTemb(Q,T) = 0 (Eq. 4). We had assumed a simple relation: the more similar two sequences, the more similar 
their embeddings because the underlying LMs only use sequences as input. Nevertheless, we observed embed-
ding-based annotation transfer to outperform (higher Fmax) sequence-based transfer (Table 1, Fig. 1). This sug-
gested embeddings to capture information beyond raw sequences. Explicitly calculating the correlation between 
sequence and embedding similarity for 431,224 sequence pairs from CAFA3/GOA2017-100, we observed a cor-
relation of ρ = 0.29 (Spearman’s correlation coefficient, p-value < 2.2e−16; Table 2). Thus, sequence and embed-
ding similarity correlated at an unexpectedly low level. However, our results demonstrated that embedding simi-
larity identified more distant relatives than sequence similarity (Figs. S1, S4).

In order to quantify how different embeddings for proteins Q and T can still share GO terms, we redundancy 
reduced the GOA2017 database used for annotation transfers at distance thresholds of decreasing PIDE with 
respect to the queries (in nine steps from 90 to 20%, Table S6). By construction, all proteins in GOA2017-100 
had PIDE < 100% to all CAFA3 queries (Q). If the pair (Q,T) with the most similar embedding was also similar 
in sequence, embedding-based would equal sequence-based transfer. At lower PIDE thresholds, e.g., PIDE < 20%, 
reliable annotation transfer through simple pairwise sequence alignment is no longer possible14,29–32. Although 
embeddings-based transfer tended to be slightly less successful for pairs with lower PIDE (Fig. 2: bars decrease 
toward right), the drop appeared small; on top, at almost all PIDE values, embedding-transfer remained above 
BLAST, i.e., sequence-based transfer (Fig. 2: most bars higher than reddish line – error bars show 95% confi-
dence intervals). The exception was for MFO at PIDE < 30% and PIDE < 20% for which the Fmax scores from 
sequence-based transfer (BLAST) were within the 95% confidence interval (Fig. 2). This clearly showed that 
our approach benefited from information available through embeddings but not through sequences, and that 
at least some protein pairs close in embedding and distant in sequence space might function alike. In order to 
correctly predict the next token, protein LMs have to learn complex correlations between residues as it is impos-
sible to remember the multitude of all possible amino acid combinations in hundreds of millions to billions of 
protein sequences. This forces models to abstract higher level features from sequences. For instance, secondary 
structure can directly be extracted from embeddings through linear projection26. The LMs (SeqVec & ProtBert) 
might even have learned to find correlations between protein pairs diverged into the “midnight zone” sequence 
comparison in which sequence similarity becomes random29,33. Those cases are especially difficult to detect by 
the most successful search methods such as BLAST34 or MMseqs235 relying on finding similar seeds missing at 
such diverged levels.

Ultimately, we failed to really explain why the abstracted level of sequences captured in embeddings out-
performed raw sequences. One attempt at addressing this question led to displaying cases for which one of the 
two worked better (Fig. S5). Looking in more detail at outliers (embeddings more similar than sequences), 
we observed that embedding-based inference tended to identify more reasonable hits in terms of lineage or 
structure. For instance, for the uncharacterized transporter YIL166C (UniProt identifier P40445) from Saccha-
romyces cerevisiae (baker’s yeast), the closest hit in SeqVec embedding space was the high-affinity nicotinic acid 
transporter (P53322) also from Saccharomyces cerevisiae. Both proteins belong to the allantoate permease family 
while the most sequence-similar hit (with PIDE = 31%) was the gustatory and odorant receptor 22 (Q7PMG3) 
from the insect Anopheles gambiae belonging to the gustatory receptor family. Experimental 3D structures were 

Table 2.   Embedding and sequence similarity correlated*. * PIDE percentage pairwise sequence identity, 
dSeqVec similarity in SeqVec20 embeddings (Eq. 5); dProtBert similarity in ProtBert21 embeddings (Eq. 5). All 
values represent Spearman’s correlation coefficients calculated for 434,001 sequence pairs. For all pairs, the 
significance was p-value < 2.2e−16, i.e., significant at the level of the precision of the software R28. The similarity 
between sequence and embeddings correlated less than the two different types of embeddings, namely SeqVec 
and ProtBert with each other. In order to highlight the trivial symmetry of the matrix, only the upper diagonal 
was given.

PIDE dSeqVec dProtBert

PIDE 1 0.293 0.248

dSeqVec 1 0.576

dProtBert 1
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not available for any of the three proteins. However, comparative modeling using Swiss-Model36 revealed that 
both the target and the hit based on SeqVec were mapped to the same template (root-mean-square deviation 
(RMSD) = 0.3 Å) (Fig. S6a) while the hit based on sequence similarity was linked to a different structure (with 
RMSD = 16.8 Å) (Fig. S6b). Similarly, for the GDSL esterase/lipase At3g48460 (Q9STM6) from Arabidopsis thali-
ana, the closest hit in ProtBert embedding space was the GDSL esterase/lipase 2 (Q9SYF0) also from Arabidopsis 
thaliana while the most sequence-similar hit was the UDP-glucose 4-epimerase (Q564Q1) from Caenorhabditis 
elegans. The target and the embedding-based hit are both hydrolases belonging to the same CATH superfamily 
while the sequence-based hit is an isomerase and not annotated to any CATH superfamily. Comparative mod-
eling suggested similar structures for target and embedding hit (RMSD = 2.9 Å) (Fig. S6c) while the structure 
found for the sequence-based hit similarity was very different (RMSD = 26 Å) (Fig. S6d). This suggested embed-
dings to capture structural features better than just raw sequences. Homology-based inference depends on many 
parameters that can especially affect the resulting sequence alignment for distantly related proteins. Possibly, 
embeddings are more robust in identifying those more distant evolutionary relatives.

Embedding‑based transfer benefited from non‑experimental annotations.  Unlike the data set 
made available by CAFA3, annotations in our GOA2017 data set were not limited to experimentally verified 
annotations. Instead, they included annotations inferred by computational biology, homology-based infer-
ence, or by “author statement evidence”, i.e., through information from publications. Using GOA2017X, the 
subset of GOA2017-100 containing only experimental terms, our method reached Fmax = 31 ± 2% (P = 28 ± 2%, 
R = 34 ± 2%), 51 ± 3% (P = 53 ± 3%, R = 49 ± 3%), and 56 ± 2% (P = 55 ± 3%, R = 57 ± 3%) for BPO, MFO, and CCO, 
respectively. Compared to using GOA2017-100, the performance dropped significantly for BPO (Fmax = 37 ± 2% 
for GOA2017-100, Table 1); it decreased slightly (within 95% confidence interval) for CCO (Fmax = 57 ± 2% for 
GOA2017-100, Table 1); and it increased slightly (within 95% confidence interval) for MFO (Fmax = 50 ± 3% for 
GOA2017-100, Table 1). Thus, less reliable annotations might still help, in particular for BPO. Annotations for 

Figure 2.   Embedding-based transfer succeeded for rather diverged proteins. After establishing the low 
correlation between embedding- and sequence-similarity, we tested how the level of percentage pairwise 
sequence identity (PIDE, x-axes) between the query (protein without known GO terms) and the transfer 
database (proteins with known GO terms, here subsets of GOA2017) affected the performance of the 
embedding-based transfer. Technically, we achieved this by removing proteins above a certain threshold in 
PIDE (decreasing toward right) from the transfer database. The y-axes showed the Fmax score as compiled by 
CAFA319. If embedding similarity and sequence identity correlated, our method would fall to the level of the 
reddish lines marked by BLAST. On the other hand, if the two were completely uncorrelated, the bars describing 
embedding-transfer would all have the same height (at least within the standard errors marked by the gray 
vertical lines at the upper end of each bar), i.e., embedding-based transfer would be completely independent of 
the sequence similarity between query and template (protein of known function). The observation that all bars 
tended to fall toward the right implied that embedding and sequence similarity correlated (although for CCO, 
Fmax remained within the 95% confidence interval of Fmax for GOA2017-100). The observation that our method 
remained mostly above the baseline predictions demonstrates that embeddings capture important orthogonal 
information. Error bars indicate 95% confidence intervals.
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BPO may rely more on information available from publications that is not as easily quantifiable experimentally 
as annotations for MFO or CCO.

Many of the non-experimental annotations constituted sequence-based annotation transfers. Thus, non-
experimental annotations might have helped because they constituted an implicit merger of sequence and 
embedding transfer. Adding homologous proteins might “bridge” sequence and embedding space by populat-
ing embedding space using annotations transferred from sequence space. The weak correlation between both 
spaces supported this speculation because protein pairs with very similar sequences may differ in their embed-
dings and vice versa.

Improving annotations from 2017 to 2020 increased performance significantly.  For CAFA3 
comparisons, we only used data available before the CAFA3 submission deadline. When running new que-
ries, annotations will be transferred from the latest GOA. We used GOA2020-100 (from 02/2020 removing 
the CAFA3 targets) to assess how the improvement of annotations from 2017 to 2020 influenced annotation 
transfer (Table 1). On GOA2020-100, SeqVec embedding-based transfer achieved Fmax = 50 ± 2% (P = 50 ± 3%, 
R = 50 ± 3%), 60 ± 3% (P = 52 ± 3%, R = 71 ± 3%), and 65 ± 2% (P = 57 ± 3%, R = 75 ± 3%) for BPO, MFO, and CCO, 
respectively, for the NK evaluation mode (Table 1). This constituted a substantial increase over GOA2017-100 
(Table 1).

The large performance boost between GOA2017 and GOA2020 suggested the addition of many relevant GO 
annotations. However, for increasingly diverged pairs (Q,T), we observed a much larger drop in Fmax than for 
GOA2017 (Fig. 2, Fig. S4). In the extreme, GOA2020-20 (PIDE(Q,T) < 20%) with Fmax = 33 ± 2% (BPO), 44 ± 2% 
(MFO), and 54 ± 2% (CCO) fell to the same level as GOA2017-20 (Figs. 2, S4). These results suggested that many 
of the relevant GO annotations were added for proteins sequence-similar to those with existing annotations. Put 
differently, many helpful new experiments simply refined previous computational predictions.

Running BLAST against GOA2020-100 for sequence-based transfer (choosing the hit with the highest 
PIDE) showed that sequence-transfer also profited from improved annotations (difference in Fmax values for 
BLAST in Table 1). However, while Fmax scores for embedding-based transfer increased the most for BPO, those 
for sequence-based transfer increased most for MFO. Embedding-transfer still outperformed BLAST for the 
GOA2020-100 set (Fig. S4c).

Even when constraining annotation transfer to sequence-distant pairs, our method outperformed BLAST 
against GOA2020-100 in terms of Fmax at least for BPO and for higher levels of PIDE in MFO/CCO (Fig. S4c). 
However, comparing the results for BLAST on the GOA2020-100 set with the performance of our method for 
subsets of very diverged sequences (e.g. PIDE < 40% for GOA2020-40) under-estimated the differences between 
sequence- and embedding-based transfer, because the two approaches transferred annotations from different 
data sets. For a more realistic comparison, we re-ran BLAST only considering hits below certain PIDE thresholds 
(for comparability we could not do this for CAFA3). As expected, performance for BLAST decreased with PIDE 
(Fig. S4 lighter bars), e.g., for PIDE < 20%, Fmax fell to 8% for BPO, 10% for MFO, and 11% for CCO (Fig. S4c 
lighter bars) largely due to low coverage, i.e., most queries had no hit to transfer annotations from. At this level 
(and for the same set), the embedding-based transfer proposed here, still achieved values of 33 ± 2% (BPO), 
44 ± 2% (MFO), and 54 ± 2% (CCO). Thus, our method made reasonable predictions at levels of sequence identity 
for which homology-based inference (BLAST) failed completely.

Performance confirmed by new proteins.  Our method and especially the threshold to transfer a GO 
term were “optimized” using the CAFA3 targets. Without any changes in the method, we tested a new data set 
of 298 proteins, GOA2020-new, with proteins for which experimental GO annotations have been added since 
the CAFA4 submission deadline (02/2020; Method). Using the thresholds optimized for CAFA3 targets (0.35 
for BPO, 0.28 for MFO, 0.29 for CCO, Fig. 3), our method reached F1 = 50 ± 11%, 54 ± 5%, and 66 ± 8% for BPO, 
MFO, and CCO, respectively. For BPO and CCO, the performance was similar to that for the CAFA3 targets; for 
MFO it was slightly below but within the 95% CI (Table 1). For yet a different set, submitted for MFO to CAFA4, 
the first preliminary evaluation published during ISMB202037, also suggested our approach to make it to the 
top-ten, in line with the post facto CAFA3 results presented here.

Embedding similarity influenced performance.  Homology-based inference works best for pairs with 
high PIDE. Analogously, we assumed embedding-transfer to be best for pairs with high embedding similarity, 
i.e., low Euclidean distance (Eq. 4). We used this to define a reliability index (RI, Eq. 5). For the GOA2020-100 
set, the minimal RI was 0.24. The CAFA evaluation determined 0.35 for BPO, 0.28 for MFO, and 0.29 for CCO 
as thresholds leading to optimal performance as measured by Fmax (Fig. 3 dashed grey lines marked these thresh-
olds). For all ontologies, precision and recall were almost constant for lower RIs (up to ~ 0.3). For higher RIs, 
precision increased, and recall decreased as expected (Fig. 3). While precision increased up to 82% for BPO, 91% 
for MFO, and 70% for CCO, it also fluctuated for high RIs (Fig. 3). This trend was probably caused by the low 
number of terms predicted at these RIs. For CCO, the RI essentially did not correlate with precision. This might 
point to a problem in assessing annotations for which the trivial Naïve method reached values of Fmax ~ 55% 
outperforming most methods. Possibly, some prediction of the type “organelle” is all that is needed to achieve a 
high Fmax in this ontology.

Similar performance for different embeddings.  We compared embeddings derived from two dif-
ferent language models (LMs). So far, we used embeddings from SeqVec20. Recently, ProtBert, a transformer-
based approach using a masked language model objective (Bert38) instead of auto-regression and more protein 
sequences (BFD39,40) during pre-training, was shown to improve secondary structure prediction21. Replacing 
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SeqVec by ProtBert embeddings to transfer annotations, our approach achieved similar Fmax scores (Table 1). In 
fact, the ProtBert Fmax scores remained within the 95% confidence intervals of those for SeqVec (Table 1). Similar 
results were observed when using GOA2017-100 (Table 1).

On the one hand, the similar performance for both embeddings might indicate that both LMs extracted 
equally beneficial aspects of function, irrespective of the underlying architecture (LSTMs in SeqVec, transformer 
encoders in ProtBert) or training set (SeqVec used UniRef50 with ~ 33 M proteins, ProtBert used BFD with ~ 2.1B 
proteins). On the other hand, the similar Fmax scores might also highlight that important information was lost 
when averaging over the entire protein to render fixed-size vectors. The similarity in Fmax scores was less surpris-
ing given the high correlation between SeqVec and ProtBert embeddings (ρ = 0.58, p-value < 2.2e-16; Table 2). 
The two LMs correlated more with each other than either with PIDE (Table 2).

No gain from simple combination of embedding‑ and sequence‑based transfer.  All three 
approaches toward annotation transfer (embeddings from SeqVec or ProtBert, and sequence) had strengths; 
although performing worse on average, for some proteins sequence-transfer performed better. In fact, analyzing 
the pairs for which embedding-based transfer or sequence-based transfer outperformed the other method by at 
least four percentage points (|Fmax(BLAST)-Fmax(embeddings)|≥ 4) illustrated the expected cases for which PIDE 
was high and embedding similarity low, and vice versa, along with more surprising cases for which low PIDE 
still yielded better predictions than relatively high embedding RIs (Fig. S5). Overall, these results (Fig. S5) again 
underlined that LM embeddings abstract information from sequence that are relevant for comparisons and not 
captured by sequences alone. However, it also indicates that even protein pairs with low embedding similar-
ity can share similar GO terms. In fact, embedding similarity for SeqVec embeddings only weakly correlated 
with GO term similarity (Spearman rank coefficient ρ = 0.28, p-value < 2.2e−16), but proteins with identical GO 
annotations were on average more likely to be close than proteins with more different GO annotations (Fig. S7). 
The similarity of GO terms for two proteins was proxied through the Jaccard index (Eq. 7). More details are 
provided in the SOM.

To benefit from the cases where BLAST outperformed our approach, we tried simple combinations: firstly, we 
considered all terms predicted by embeddings from either SeqVec or ProtBert. Secondly, reliability scores were 
combined leading to higher reliability for terms predicted in both approaches than for terms only predicted by 
one. None of those two improved performance (Table S4, method SeqVec/ProtBert). Other simple combinations 
also failed so far (Table S4, method SeqVec/ProtBert/BLAST). Future work might improve performance through 
more advanced combinations.

Case study: embedding‑based annotation transfer for three proteomes.  Due to its simplicity 
and speed, embedding-based annotation transfer can easily be applied to novel proteins to shed light on their 
potential functionality. We applied our method to the proteomes of three different proteomes: human (20,370 
proteins from Swiss-Prot) as a well-researched proteome, the fungus Armillaria ostoyae (22,192 proteins, 0.01% 

Figure 3.   Precision and recall for different reliability indices (RIs). We defined a reliability index (RI) 
measuring the strength of a prediction (Eq. 5), i.e., for the embedding proximity. Precision (Eq. 1) and recall 
(Eq. 2) were almost constant for lower RIs (up to ~ 0.3) for all three ontologies (BPO, MFO, CCO). For higher 
RIs, precision increased while recall dropped. However, due to the low number of terms predicted at very 
high RIs (> 0.8), precision fluctuated and was not fully correlated with RI. Panel (a) shows precision and recall 
for BPO, panel (b) for MFO, and panel (c) for CCO. Dashed vertical lines marked the thresholds used by the 
CAFA3 tool to compute Fmax: 0.35 for BPO, 0.28 for MFO, and 0.29 for CCO. At least for BPO and MFO higher 
RI values correlated with higher precision, i.e., users could use the RI to estimate how good the predictions are 
likely to be for their query, or to simply scan only those predictions more likely to be correct (e.g. RI > 0.8).
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of these in Swiss-Prot), as one of the oldest (2500 years) and largest (4*105 kg/spanning over 10 km2) living 
organisms known today41, and SARS-CoV-2, the virus causing COVID-19 (14 proteins). At RI = 1.0, annota-
tions were inferred from proteins of this organism (“self-hits”). Using only experimentally verified annotations 
(lookup data set GOA2020X), revealed both how few proteins were directly annotated (self-hits) in these organ-
isms and how much of the sequence-annotation gap is gapped through embedding-based inference (Fig. 4: bars 
with darker orange, blue, green for BPO, CCO, and MFO respectively). In particular, for self-hits, i.e., proteins 
with 100% pairwise sequence identity (PIDE) to the protein with known annotation, it became obvious how few 
proteins in human have explicit experimental annotation (sum over all around 270), while through embedding-
based inference up to 80% of all human proteins could be annotated through proteins from other organisms 
(light bars in Fig. 4 give results for the entire GOA2020 which is dominated by annotations not directly verified 
by experiment). For the other two proteomes from the fungus (Armillaria ostoyae) and the coronavirus (SARS-
CoV-2), there were no inferences at this high level. On the other end of including all inferences as assessed 
through the data presented in all other figures and tables (i.e., at the default thresholds), for all three proteins 
most proteins could be annotated directly from experimentally verified annotations through embeddings (three 
left-most bars in Fig. 4 for BPO, CCO, and MFO). In fact, when including all GO annotations from GOA (lookup 
set GOA2020), almost all proteins in all three proteomes could be annotated (Fig. 4: lighter colored left-most 
bars close to fraction of 1, i.e., all proteins). For SARS-CoV-2, our method reached 100% coverage (prediction 
for all proteins) already at RI≥0.5 (Fig. 4c, lighter colors, middle bars) through well-studied, similar viruses such 
as the human SARS coronavirus (SARS-CoV). RI = 0.5 represent roughly a precision and recall of 50% for all 
three ontologies (Fig. 3). For Armillaria ostoyae, almost no protein was annotated through self-hits even when 
using unverified annotations (Fig. 4b: no bar at RI = 1). At RI = 0.5, about 25% of the proteins were annotated.

Case study: embedding‑based annotation transfer for SARS‑CoV‑2 proteome.  Given the rel-
evance of SARS-CoV-2, we did not only apply our method to predict GO terms (BPO, MFO, and CCO) for 
all 14 SARS-CoV-2 proteins (taken from UniProt3; all raw predictions were made available as additional files 
named predictions_$emb_$ont.txt replacing the variables $emb and $ont as follows: $emb = seqvec|protbert, 

Figure 4.   Fraction of proteomes with predicted GO terms. We applied our method to three proteomes 
(animal: Homo sapiens, fungus: Armillaria ostoyae, and virus: SARS-Cov-2) and monitored the fraction of 
proteins in each proteome for which our method predicted GO terms for different thresholds in embedding 
similarity (RI, Eq. 5). We show predictions for RI = 1.0 (“self-hits”), RI = 0.5 (with an expected precision/
recall = 0.5), and RI = 0.3 (CAFA3 thresholds). Darker colored bars indicate predictions using GOA2020X 
as lookup set (only experimentally verified GO annotations) and lighter colors indicate predictions using 
GOA2020 as lookup set (using all annotations in GOA). (a) The human proteome is well-studied (all 20,370 
proteins are in Swiss-Prot) and for most proteins, GO annotations are available, but those annotations are 
largely not experimentally verified (very small, dark-colored bars vs large, lighter-colored bars at RI = 1.0). (b) 
The proteome of the fungus Armillaria ostoyae appears more exceptional (0.01% of the 22,192 proteins were 
in Swiss-Prot); at RI ≥ 0.5, predictions could be made only for 25% of the proteins when also using unverified 
annotations and none of the proteins already had any GO annotations. (c) While annotations were unknown 
for most proteins of the novel virus SARS-CoV-2 (no coverage at RI = 1), many annotations could be transferred 
from the human SARS coronavirus (SARS-CoV) and the bat coronavirus HKU3 (BtCoV) allowing GO term 
predictions for all proteins at reliability values ≥ 0.5.
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and $ont = bpo|mfo|cco), but also investigated the resulting annotations further. While the two replicase poly-
proteins pp1a and pp1ab can also be split further into up to 12 non-structural proteins resulting in 28 proteins42, 
we used the definition from UniProt identifying 14 different proteins.

Step 1: confirmation of known annotations. Out of the 42 predictions (14 proteins in 3 ontologies), 12 were 
based on annotation transfers using proteins from the human SARS coronavirus (SARS-CoV), and 13 on proteins 
from the bat coronavirus HKU3 (BtCoV). CCO predictions appeared reasonable with predicted locations mainly 
associated with the virus (e.g., viral envelope, virion membrane) or the host (e.g., host cell Golgi apparatus, host 
cell membrane). Similarly, MFO predictions often matched well-known annotations, e.g., the replicase polypro-
teins 1a and 1ab were predicted to be involved in RNA-binding as confirmed by UniProt. In fact, annotations 
in BPO were known for 7 proteins (in total 40 GO terms), in MFO for 6 proteins (30 GO terms), and in CCO 
for 12 proteins (68 GO terms). Only three of these annotations were experimentally verified. With our method, 
we predicted 25 out of the 40 GO terms for BPO (63%), 14/30 for MFO (47%), and 59/68 for CCO (87%). Even 
more annotations were similar to the known GO annotations but were more or less specific (Table S5 summa-
rized all predicted and annotated GO leaf terms, the corresponding names can be found in the additional files 
predictions_$emb_$ont.txt).

Step 2: new predictions. Since the GO term predictions matched well-characterized proteins, predictions 
might provide insights into the function of proteins without or with fewer annotations. For example, function 
and structure of the non-structural protein 7b (Uniprot identifier P0DTD8) are not known except for a trans-
membrane region of which the existence was supported by the predicted CCO annotation “integral component of 
the membrane” and “host cell membrane”. This CCO annotation was also correctly predicted by the embedding-
based transfer from an Ashbya gossypii protein. Additionally, we predicted “transport of virus in host, cell to cell” 
for BPO and “proton transmembrane transporter activity” for MFO. This suggested non-structural protein 7b to 
play a role in transporting the virion through the membrane into the host cell. Visualizing the leaf term predic-
tions in the GO hierarchy could help to better understand very specific annotations. For the BPO annotation 
of the non-structural protein 7b, the tree revealed that this functionality constituted two major aspects: The 
interaction with the host and the actual transport to the host (Fig. S10). To visualize the predicted terms in the 
GO hierarchy, for example the tool NaviGO43 can be used which can help to interpret the GO predictions given 
for the SARS-CoV-2 proteins here.

Comparing annotation transfers based on embeddings from SeqVec and from ProtBert showed that 16 of 
the 42 predictions agreed for the two different language models (LMs). For five predictions, one of the two LMs 
yielded more specific annotations, e.g., for the nucleoprotein (Uniprot identifier P0DTC9) which is involved in 
viral genome packaging and regulation of viral transcription and replication. For this protein, SeqVec embeddings 
found no meaningful result, while ProtBert embeddings predicted terms such as “RNA polymerase II preinitia-
tion complex” and “positive regulation of transcription by RNA polymerase II” fitting to the known function of 
the nucleoprotein. This example demonstrated how the combination of results from predictions using different 
LMs may refine GO term predictions.

Conclusions
We introduce a new concept for the prediction of GO terms, namely the annotation transfer based on similarity of 
embeddings obtained from deep learning language models (LMs). This approach conceptually replaces sequence 
information by complex embeddings that capture some non-local information beyond sequence similarity. The 
underlying LMs (SeqVec & ProtBert) are highly involved and complex, and their training is time-consuming 
and data intensive. Once that is done, those pre-trained LMs can be applied, their abstracted understanding of 
the language of life as captured by protein sequences can be transferred to yield an extremely simple, yet effective 
novel method for annotation transfer. This novel prediction method complements homology-based inference. 
Despite its simplicity, this new method outperformed by several margins of statistically significance homology-
based inference (“BLAST”) with Fmax values of BPO + 11 ± 2% (Fmax(embedding)-Fmax(sequence)), MFO + 8 ± 3%, 
and CCO + 11 ± 2% (Table 1, Fig. 1); it even might have reached the top ten, had it participated at CAFA3 (Fig. 1). 
Embedding-based transfer remained above the average for sequence-based transfer even for protein pairs with 
PIDE < 20% (Fig. 2), i.e., embedding similarity worked for proteins that diverged beyond the recognition in pair-
wise alignments (Figs. S2 & S3). Embedding-based transfer is also blazingly fast to compute, i.e., around 0.05 s 
per protein. The only time-consuming step is computing embeddings for all proteins in the lookup database 
which needs to be done only once; it took about 30 min for the entire human proteome. GO annotations added 
from 2017 to 2020 improved both sequence- and embedding-based annotation transfer significantly (Table 1). 
Another aspect of the simplicity is that, at least in the context of the CAFA3 evaluation, the choice of none of 
the two free parameters really mattered: embeddings from both LMs tested performed, on average, equally, and 
the number of best hits (k-nearest neighbors) did not matter much (Table S2). The power of this new concept 
is generated by the degree to which embeddings implicitly capture important information relevant for protein 
structure and function prediction. One reason for the success of our new concept was the limited correlation 
between embeddings and sequence (Table 2). Additionally, the abstraction of sequence information in embed-
dings appeared to make crucially meaningful information readily available (Fig. S6). This implies that embed-
dings have the potential to revolutionize the way sequence comparisons are carried out.

Methods
Generating embedding space.  The embedding-based annotation transfer introduced here requires each 
protein to be represented by a fixed-length vector, i.e., a vector with the same dimension for a protein of 30 and 
another of 40,000 residues (maximal sequence length for ProtBert). To this end, we used SeqVec20 to represent 
each protein in our data set by a fixed size embedding. SeqVec is based on ELMo44 using a stack of LSTMs45 for 
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auto-regressive pre-training46,47 i.e., predicting the next token (originally a word in a sentence, here an amino 
acid in a protein sequence), given all previous tokens. Two independent stacks of LSTMs process the sequence 
from both directions. During pre-training, the two directions are joined by summing their losses; concatenat-
ing the hidden states of both directions during inference lets supervised tasks capture bi-directional context. 
For SeqVec, three layers, i.e., one uncontextualized CharCNN48 and two bi-directional LSTMs, were trained on 
each protein in UniRef50 (UniProt3 clustered at 50% PIDE resulting in ~ 33 M proteins). In order to increase 
regularization, the weights of the token representation (CharCNN) as well as the final Softmax layer were shared 
between the two LSTM directions, and a 10% dropout rate was applied. For SeqVec, the CharCNN as well as 
each LSTM has a hidden state of size 512, resulting in a total of 93 M free parameters. As only unlabeled data (no 
phenotypical data) was used (self-supervised training), the embeddings could not capture any explicit informa-
tion such as GO numbers. Thus, SeqVec does not need to be retrained for subsequent prediction tasks using the 
embeddings as input. The hidden states of the pre-trained model are used to extract features. Corresponding to 
its hidden state size, SeqVec outputs for each layer and each direction a 512-dimensional vector; in this work, 
only the forward and backward passes of the first LSTM layer were extracted and concatenated into a matrix 
of size L * 1024 for a protein with L residues. While the auto-regressive pre-training only allowed to gather 
contextual information from either direction, the concatenation of the representations allowed our approach to 
benefit from bi-directional context. A fixed-size representation was then derived by averaging over the length 
dimension, resulting in a vector of size 1024 for each protein (Fig. S11). This simple way of information pool-
ing (also called global average pooling) outperformed in many cases more sophisticated methods in NLP49 and 
showed competitive performance in bioinformatics for some tasks20,21,26. Based on experience from NLP49,50, 
we also investigated the effect of using a different pooling strategy, i.e., maximum pooling, to derive fixed size 
representations from SeqVec embeddings.

To evaluate the effect of using different LMs to generate the embeddings, we also used a transformer-based LM 
trained on protein sequences (ProtBert-BFD21, here simply referred to as ProtBert). ProtBert is based on the LM 
BERT38 (Bidirectional Encoder Representations from Transformers51) which processes sequential data through 
the self-attention mechanism52. Self-attention compares all tokens in a sequence to all others in parallel, thereby 
capturing long-range dependencies better than LSTMs. BERT also replaced ELMo’s auto-regressive objective 
by masked language modeling during pre-training, i.e., reconstructing corrupted tokens from the input, which 
enables to capture bi-directional context. ProtBert was trained with 30 attention layers, each having 16 attention 
heads with a hidden state size of 1024 resulting in a total of 420 M free parameters which were optimized on 
2.1B protein sequences (BFD)39,40 which is 70 times larger than UniRef50. The output of the last attention layer 
of ProtBert was used to derive a 1024-dimensional embedding for each residue. As for SeqVec, the resulting L * 
1024 matrix was pooled by averaging over protein length providing a fixed-size vector of dimension 1024 for each 
protein. Usually, BERT’s special CLS-token is used for sequence-classification tasks38 as it is already optimized 
during pre-training on summarizing sequence information by predicting whether two sentences are consecutive 
in a document or not. In the absence of such a concept for proteins, this second loss was dropped from ProtBert’s 
pre-training rendering the CLS token without further fine-tuning on supervised tasks uninformative.

Embeddings derived from LMs change upon retraining the model with a different random seed, even using 
the same data and hyper-parameters. They are likely to change more substantially when switching the training 
data or tuning hyper-parameters. As retraining LMs is computationally (and environmentally) expensive, we 
leave assessing the impact of fine-tuning LMs to the future.

Generating the embeddings for all human proteins using both SeqVec and ProtBert allowed estimating the 
time required for the generation of the input to our new method. Using a single Nvidia GeForce GTX1080 with 
8 GB vRAM and dynamic batching (depending on the sequence length), this took, on average, about 0.05 s per 
protein21.

Data set.  To create a database for annotation transfer, we extracted protein sequences with annotated 
GO terms from the Gene Ontology Annotation (GOA) database53–55 (containing 29,904,266 proteins from 
UniProtKB3 in February 2020). In order to focus on proteins known to exist, we only extracted records from 
Swiss-Prot56. Proteins annotated only at the ontology roots, i.e. proteins limited to “GO:0003674” (molecular_
function), “GO:0008150” (biological_process), or “GO:0005575” (cellular_component) were considered mean-
ingless and were excluded. The final data set GOA2020 contained 295,558 proteins (with unique identifiers, IDs) 
described by 31,485 different GO terms. The GO term annotation for each protein includes all annotated terms 
and all their parent terms. Thereby, proteins are, on average, annotated by 37 terms in BPO, 14 in MFO, and 9 in 
CCO. Counting only leaves brought the averages to 3 in BPO, 2 in MFO, and 3 in CCO.

For comparison to methods that contributed to CAFA319, we added another data set GOA2017 using the 
GOA version available at the submission deadline of CAFA3 (Jan 17, 2017). After processing (as for GOA2020), 
GOA2017 contained 307,287 proteins (unique IDs) described by 30,124 different GO terms. While we could 
not find a definite explanation for having fewer proteins in the newer database (GOA2020 295 K proteins vs. 
GOA2017 with 307 K), we assume that it originated from major changes in GO including the removal of obsolete 
and inaccurate annotations and the refactoring of MFO2.

The above filters neither excluded GOA annotations inferred from phylogenetic evidence and author state-
ments nor those based on computational analysis. We constructed an additional data set, GOA2017X exclusively 
containing proteins annotated in Swiss-Prot as experimental (evidence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS, 
or IC) following the CAFA3 definition19. We further excluded all entries with PIDE = 100% to any CAFA3 target 
bringing GOA2017X to 303,984 proteins with 28,677 different GO terms.
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Performance evaluation.  The targets from the CAFA3 challenge19 were used to evaluate the performance 
of our new method. Of the 130,827 targets originally released for CAFA3, experimental GO annotations were 
obtained for 3328 proteins at the point of the final benchmark collection in November 201719. This set consisted 
of the following subsets with experimental annotations in each sub-hierarchy of GO: BPO 2145, MFO 1101, and 
CCO 1097 (more details about the data set are given in the original CAFA3 publication19).

We used an additional data set, dubbed GOA2020-new, containing proteins added to GOA after February 
2020, i.e., the point of accession for the GOA set used during the development of our method in preparation for 
CAFA4. This set consisted of 298 proteins with experimentally verified GO annotations and without any identical 
hits (i.e. 100% PIDE) in the lookup set GOA2020.

In order to expand the comparison of the transfer based on sequence- and embedding similarity, we also 
reduced the redundancy through applying CD-HIT and PSI-CD-HIT57 to the GOA2020 and GOA2017 sets 
against the evaluation set at thresholds θ of PIDE = 100, 90, 80, 70, 60, 50, 40, 30 and 20% (Table S6 in the Sup-
porting Online Material (SOM) for more details about these nine subsets).

We evaluated our method against two baseline methods used at CAFA3, namely Naïve and BLAST, as well as, 
against CAFA3′s top ten19. We computed standard performance measures. True positives (TP) were GO terms 
predicted above a certain reliability (RI) threshold (Method below), false positives (FP) were GO terms predicted 
but not annotated, and false negatives (FN) were GO terms annotated but not predicted. Based on these three 
numbers, we calculated precision (Eq. 1), recall (Eq. 2), and F1 score (Eq. 3) as follows.

The Fmax value denoted the maximum F1 score achievable for any threshold in reliability (RI, Eq. 5). This 
implies that the assessment fixes the optimal value rather than the method providing this value. Although this 
arguably over-estimates performance, it has evolved to a quasi-standard of CAFA; the publicly available CAFA 
Assessment Tool18,19 calculated Fmax for the CAFA3 targets in the same manner as for the official CAFA3 evalu-
ation. If not stated otherwise, we reported precision and recall values for the threshold leading to Fmax.

CAFA3 assessed performance separately for two sets of proteins for all three ontologies: (i) proteins for which 
no experimental annotations were known beforehand (no-knowledge, NK evaluation mode) and (ii) proteins 
with some experimental annotations in one or two of the other ontologies (limited-knowledge, LK evaluation 
mode)9,19. We also considered these sets separately in our assessment. CAFA3 further distinguished between 
full and partial evaluation with full evaluation penalizing if no prediction was made for a certain protein, and 
partial evaluation restricting the assessment to the subset of proteins with predictions19. Our method predicted 
for every protein; thus, we considered only the full evaluation. Also following CAFA3, symmetric 95% confi-
dence intervals were calculated as error estimates assuming a normal distribution and 10,000 bootstrap samples 
estimated mean and standard deviation.

Method: annotation transfer through embedding similarity.  For a given query protein Q, GO 
terms were transferred from proteins with known GO terms (sets GOA2020 and GOA2017) through an approach 
similar to the k-nearest neighbor algorithm (k-NN)58. For the query Q and for all proteins in, e.g., GOA2020, 
the SeqVec20 embeddings were computed. Based on the Euclidean distance between two embeddings n and m 
(Eq. 4), we extracted the k closest hits to the query from the database where k constituted a free parameter to 
optimize.

In contrast to standard k-NN algorithms, all annotations from all hits were transferred to the query instead 
of only the most frequent one58. When multiple pairs reached the same distance, all were considered, i.e., for a 
given k, more than k proteins might be considered for the GO term prediction. The calculation of the pairwise 
Euclidean distances between queries and all database proteins and the subsequent nearest neighbor extraction 
was accomplished very efficiently. For instance, the nearest-neighbor search of 1000 query proteins against 
GOA20* with about 300,000 proteins took on average only about 0.005 s per query on a single i7-6700 CPU, i.e., 
less than two minutes for all human proteins.

Converting the Euclidean distance enabled to introduce a reliability index (RI) ranging from 0 (weak predic-
tion) to 1 (confident prediction) for each predicted GO term p as follows:

(1)P = precision =
TP

TP + FP

(2)R = recall =
TP

TP + FN

(3)F1 = 2 •
Precision • Recall

Precision+ Recall

(4)d(n,m) =

√

√

√

√

1024
∑

i=1

(ni −mi)
2

(5)RI(p) =
1

k

l
∑

i=1

0.5

0.5+ d(q, ni)
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with k as the overall number of hits/neighbors, l as the number of hits annotated with the GO term p and the 
distance d(q, ni) between query and hit being calculated according to Eq. (4).

Proteins represented by an embedding identical to the query protein (d = 0) led to RI = 1. Since the RI also 
takes into account, how many proteins l in a list of k hits are annotated with a certain term p (Eq. 5), predicted 
terms annotated to more proteins (larger l) have a higher RI than terms annotated to fewer proteins (smaller 
l). As this approach accounts for the agreement of the annotations between the k hits, it requires the RI to be 
normalized by the number of considered neighbors k, making it not directly comparable for predictions based 
on different values for k. On top, if different embeddings are used to identify close proteins, RI values are not 
directly comparable, because embeddings might be on different scales.

Instead of assessing embedding proximity through the Euclidean distance, the embedding field typically uses 
the cosine distance (Eq. 6):

Our initial assessment suggested cosine and Euclidean distance to perform alike, and we chose to use the 
metric more familiar to structural biologists, namely the Euclidean distance throughout this analysis.

GO term similarity.  We measured the similarity between two sets of GO annotations A and B through the 
Jaccard index (Eq. 7) where |A ∩ B| is the number of GO terms present in both sets and |A ∪ B| is the number of 
GO terms present in at least one of the sets (duplicates are only counted once):

Correlation analysis.  We analyzed the correlation between sequence identity and embedding similarity 
through the Spearman’s rank correlation coefficient because our data was neither distributed normally, nor were 
the two measures for similarity measures linear. In contrast to, e.g. Pearson correlation, Spearman does not 
assume a normal distribution and detects monotonic instead of linear relations59,60.

Availability.  GO term predictions using embedding similarity for a certain protein sequence can be per-
formed through our publicly available webserver: https​://embed​.prote​in.prope​rties​/. The source code along with 
all embeddings for GOA2020 and GOA2017, and the CAFA3 targets are also available on GitHub: https​://githu​
b.com/Rostl​ab/goPre​dSim (more details in the repository). In addition to reproducing the results, the source 
code also allows calculating embedding similarity using cosine distance.

Data availability
The source code and the embedding sets for target proteins and lookup databases are publicly available as a 
GitHub repository. GO term predictions for the SARS-CoV-2 proteins are provided as additional files and in 
the GitHub repository.

Received: 7 September 2020; Accepted: 24 December 2020

References
	 1.	 Krebs, H. A. & Johnson, W. A. Metabolism of ketonic acids in animal tissues. Biochem J 31, 645–660. https​://doi.org/10.1042/bj031​

0645 (1937).
	 2.	 The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 47, D330–D338. 

https​://doi.org/10.1093/nar/gky10​55 (2019).
	 3.	 UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515. https​://doi.org/10.1093/

nar/gky10​49 (2019).
	 4.	 Hirst, J. D. & Sternberg, M. J. E. Prediction of structural and functional features of protein and nucleic acid sequences by artificial 

neural networks. Biochemistry 31, 615–623 (1992).
	 5.	 Rost, B., Liu, J., Nair, R., Wrzeszczynski, K. O. & Ofran, Y. Automatic prediction of protein function. Cell. Mol. Life Sci. 60, 

2637–2650 (2003).
	 6.	 Leslie, C., Eskin, E., Weston, J. & Noble, W. S. Mismatch string kernels for SVM protein classification. Bioinformatics, in press 

(2003).
	 7.	 Ofran, Y., Punta, M., Schneider, R. & Rost, B. Beyond annotation transfer by homology: novel protein-function prediction methods 

to assist drug discovery. Drug Discov. Today 10, 1475–1482 (2005).
	 8.	 Hamp, T. et al. Homology-based inference sets the bar high for protein function prediction. BMC Bioinform. 14(Suppl 3), S 7. 

https​://doi.org/10.1186/1471-2105-14-S3-S7 (2013).
	 9.	 Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 10, 221–227. https​://doi.

org/10.1038/nmeth​.2340 (2013).
	10.	 Cozzetto, D., Minneci, F., Currant, H. & Jones, D. T. FFPred 3: feature-based function prediction for all Gene Ontology domains. 

Sci. Rep. 6, 31865. https​://doi.org/10.1038/srep3​1865 (2016).
	11.	 Kulmanov, M. & Hoehndorf, R. DeepGOPlus: improved protein function prediction from sequence. Bioinformatics 36, 422–429. 

https​://doi.org/10.1093/bioin​forma​tics/btz59​5 (2020).
	12.	 Zuckerkandl, E. Evolutionary processes and evolutionary noise at the molecular level. J. Mol. Evol. 7, 269–311 (1976).
	13.	 Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. 

Trends Biochem. Sci. 24, 34–36 (1999).

(6)dcosine(n,m) = 1−

∑1024
i=1 nimi

√

∑1024
i=1 n2i •

√

∑1024
i=1 m2

i

(7)J(A,B) =
|A ∩ B|

|A ∪ B|

https://embed.protein.properties/
https://github.com/Rostlab/goPredSim
https://github.com/Rostlab/goPredSim
https://doi.org/10.1042/bj0310645
https://doi.org/10.1042/bj0310645
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1186/1471-2105-14-S3-S7
https://doi.org/10.1038/nmeth.2340
https://doi.org/10.1038/nmeth.2340
https://doi.org/10.1038/srep31865
https://doi.org/10.1093/bioinformatics/btz595


13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1160  | https://doi.org/10.1038/s41598-020-80786-0

www.nature.com/scientificreports/

	14.	 Nair, R. & Rost, B. Sequence conserved for sub-cellular localization. Protein Sci. 11, 2836–2847 (2002).
	15.	 Goldberg, T. et al. LocTree3 prediction of localization. Nucleic Acids Res. 42, W350-355. https​://doi.org/10.1093/nar/gku39​6 (2014).
	16.	 Qiu, J. et al. ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence. 

J. Mol. Biol. 432, 2428–2443. https​://doi.org/10.1016/j.jmb.2020.02.026 (2020).
	17.	 Goldberg, T., Rost, B. & Bromberg, Y. Computational prediction shines light on type III secretion origins. Sci. Rep. 6, 34516. https​

://doi.org/10.1038/srep3​4516 (2016).
	18.	 Jiang, Y. et al. An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol. 

17, 184. https​://doi.org/10.1186/s1305​9-016-1037-6 (2016).
	19.	 Zhou, N. et al. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds 

of genes through experimental screens. Genome Biol. 20, 244. https​://doi.org/10.1186/s1305​9-019-1835-8 (2019).
	20.	 Heinzinger, M. et al. Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinform. 20, 

723. https​://doi.org/10.1186/s1285​9-019-3220-8 (2019).
	21.	 Elnaggar, A. et al. ProtTrans: towards cracking the language of life’s code through self-supervised deep learning and high perfor-

mance computing. bioRxiv (2020).
	22.	 Mikolov, T., Cheng, K., Corrado, G. & Dean, J. Efficient Estimation of Word Representations in Vector Space. In 1st International 

Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2–4, 2013, Workshop Track Proceedings.
	23.	 Allen, C. & Hospedales, T. Analogies Explained: Towards Understanding Word Embeddings. In Proceedings of the 36th International 

Conference on Machine Learning. 223–231 (PMLR).
	24.	 Brokos, G.-I., Malakasiotis, P. & Androutsopoulos, I. Using Centroids of Word Embeddings and Word Mover’s Distance for 

Biomedical Document Retrieval in Question Answering. In Proceedings of the 15th Workshop on Biomedical Natural Language 
Processing. 114–118 (Association for Computational Linguistics).

	25.	 Kusner, M. J., Sun, Y., Kolkin, N. I. & Weinberger, K. Q. From Word Embeddings to Document Distances. In Proceedings of the 
32nd International Conference on International Conference on Machine Learning - Volume 37.

	26.	 Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. 
bioRxiv, 622803. https​://doi.org/10.1101/62280​3 (2020).

	27.	 Vig, J. et al. BERTology meets Biology: Interpreting Attention in Protein Language Models. arXiv (2020).
	28.	 R Core Team (R Foundation for Statistical Computing, 2017).
	29.	 Rost, B. Twilight zone of protein sequence alignments. Protein Eng. 12, 85–94 (1999).
	30.	 Rost, B. Enzyme function less conserved than anticipated. J. Mol. Biol. 318, 595–608 (2002).
	31.	 Mika, S. & Rost, B. Protein–protein interactions more conserved within species than across species. PLoS Comput. Biol. 2, e79. 

https​://doi.org/10.1371/journ​al.pcbi.00200​79 (2006).
	32.	 Clark, W. T. & Radivojac, P. Analysis of protein function and its prediction from amino acid sequence. Proteins 79, 2086–2096. 

https​://doi.org/10.1002/prot.23029​ (2011).
	33.	 Rost, B. Protein structures sustain evolutionary drift. Fold Des. 2, S19–S24 (1997).
	34.	 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https​

://doi.org/10.1016/S0022​-2836(05)80360​-2 (1990).
	35.	 Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Bio-

technol. 35, 1026–1028. https​://doi.org/10.1038/nbt.3988 (2017).
	36.	 Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–

W303. https​://doi.org/10.1093/nar/gky42​7 (2018).
	37.	 El-Mabrouk, N. & Slonim, D. K. ISMB 2020 proceedings. Bioinformatics 36, i1–i2. https​://doi.org/10.1093/bioin​forma​tics/btaa5​

37 (2020).
	38.	 Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Under-

standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: 
Human Language Technologies, Volume 1 (Long and Short Papers). 4171–4186 (Association for Computational Linguistics).

	39.	 Steinegger, M., Mirdita, M. & Söding, J. Protein-level assembly increases protein sequence recovery from metagenomic samples 
manyfold. Nat. Methods 16, 603–606. https​://doi.org/10.1038/s4159​2-019-0437-4 (2019).

	40.	 Steinegger, M. & Söding, J. Clustering huge protein sequence sets in linear time. Nat. Commun. 9, 2542. https​://doi.org/10.1038/
s4146​7-018-04964​-5 (2018).

	41.	 Anderson, J. B. et al. Clonal evolution and genome stability in a 2500-year-old fungal individual. Proc. Biol. Sci. 285, 20182233. 
https​://doi.org/10.1098/rspb.2018.2233 (2018).

	42.	 O’Donoghue, S. I. et al. SARS-CoV-2 structural coverage map reveals state changes that disrupt host immunity. bioRxiv (2020).
	43.	 Wei, Q., Khan, I. K., Ding, Z., Yerneni, S. & Kihara, D. NaviGO: interactive tool for visualization and functional similarity and 

coherence analysis with gene ontology. BMC Bioinform. 18, 177. https​://doi.org/10.1186/s1285​9-017-1600-5 (2017).
	44.	 Peters, M. E. et al. Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of the North American Chapter 

of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2227–2237 (Association 
for Computational Linguistics).

	45.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780. https​://doi.org/10.1162/
neco.1997.9.8.1735 (1997).

	46.	 Mousa, A. & Schuller, B. Contextual Bidirectional Long Short-Term Memory Recurrent Neural Network Language Models: a 
generative approach to sentiment analysis. In Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for 
Computational Linguistics: Volume 1, Long Papers. 1023–1032 (Association for Computational Linguistics).

	47.	 Peters, M., Ammar, W., Bhagavatula, C. & Power, R. Semi-supervised sequence tagging with bidirectional language models. 
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 1756–1765 
(Association for Computational Linguistics).

	48.	 Kim, Y., Jernite, Y., Sontag, D. & Rush, A. M. Character-aware Neural Language Models. In Proceedings of the Thirtieth AAAI 
Conference on Artificial Intelligence. (AAAI Press).

	49.	 Shen, D. et al. Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms. In 
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 440–450 (Associa-
tion for Computational Linguistics).

	50.	 Conneau, A., Douwe, K., Schwenk, H., Barrault, L. & Bordes, A. Supervised Learning of Universal Sentence Representations From 
Natural Language Inference Data. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 
670–680 (Association for Computational Linguistics).

	51.	 Vaswani, A. et al. Attention is All You Need. In Neural information processing systems conference. (eds I Guyon et al.) 5998–6008 
(Curran Associates, Inc.).

	52.	 Bahdanau, D., Cho, K. H. & Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate in arXiv.
	53.	 Camon, E. et al. The Gene Ontology Annotation (GOA) database: sharing knowledge in Uniprot with Gene Ontology. Nucleic 

Acids Res. 32, D262–266. https​://doi.org/10.1093/nar/gkh02​1 (2004).
	54.	 Huntley, R. P. et al. The GOA database: gene Ontology annotation updates for 2015. Nucleic Acids Res. 43, D1057–1063. https​://

doi.org/10.1093/nar/gku11​13 (2015).
	55.	 GOA, http://www.ebi.ac.uk/GOA (2020).

https://doi.org/10.1093/nar/gku396
https://doi.org/10.1016/j.jmb.2020.02.026
https://doi.org/10.1038/srep34516
https://doi.org/10.1038/srep34516
https://doi.org/10.1186/s13059-016-1037-6
https://doi.org/10.1186/s13059-019-1835-8
https://doi.org/10.1186/s12859-019-3220-8
https://doi.org/10.1101/622803
https://doi.org/10.1371/journal.pcbi.0020079
https://doi.org/10.1002/prot.23029
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1093/nar/gky427
https://doi.org/10.1093/bioinformatics/btaa537
https://doi.org/10.1093/bioinformatics/btaa537
https://doi.org/10.1038/s41592-019-0437-4
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1038/s41467-018-04964-5
https://doi.org/10.1098/rspb.2018.2233
https://doi.org/10.1186/s12859-017-1600-5
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1093/nar/gkh021
https://doi.org/10.1093/nar/gku1113
https://doi.org/10.1093/nar/gku1113
http://www.ebi.ac.uk/GOA


14

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1160  | https://doi.org/10.1038/s41598-020-80786-0

www.nature.com/scientificreports/

	56.	 Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M. & Bairoch, A. UniProtKB/Swiss-Prot. Methods Mol. Biol. 406, 89–112. https​
://doi.org/10.1007/978-1-59745​-535-0_4 (2007).

	57.	 Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 
28, 3150–3152. https​://doi.org/10.1093/bioin​forma​tics/bts56​5 (2012).

	58.	 Cover, T. & Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967).
	59.	 Dodge, Y. The Concise Encyclopedia of Statistics 502–505 (Springer, New York, 2008).
	60.	 Spearman, C. The Proof and Measurement of Association Between Two Things. Am. J. Psychol. 15, 72–101 (1904).

Acknowledgements
Thanks to Tim Karl and Inga Weise (both TUM) for invaluable help with technical and administrative aspects 
of this work. Thanks to the organizers and participants of the CAFA challenge for their crucial contributions, 
in particular to Predrag Radivojac (Northeastern Boston), Iddo Friedberg (Iowa State Ames), Sean Mooney (U 
of Washington Seattle), Casey Green (U Penn Philadelphia, USA), Mark Wass (Kent, England), and Kimberly 
Reynolds (U Texas Dallas). Particular thanks to the maintainers of the Gene Ontology (in particular to Michael 
Ashburner—Cambridge and Suzanna Lewis – Berkeley), as well as, the Gene Ontology Annotation database 
(maintained by the team of Claire O’Donovan at the EBI) for their standardized vocabulary and curated data 
sets. Last, but not least, thanks to all maintainers of public databases and to all experimentalists who enabled this 
analysis by making their data publicly available. This work was supported by the Bavarian Ministry of Education 
through funding to the TUM, by a grant from the Alexander von Humboldt foundation through the German 
Ministry for Research and Education (BMBF: Bundesministerium für Bildung und Forschung), by a grant from 
BMBF (Software Campus, 01IS17049) as well as by a grant from Deutsche Forschungsgemeinschaft (DFG–GZ: 
RO1320/4–1). We gratefully acknowledge the support of NVIDIA Corporation with the donation of one Titan 
GPU used for this research.

Author contributions
M.L. implemented the method goPredSim and performed evaluations. M.H. provided SeqVec and ProtBert 
embeddings and contributed various ideas and comments to improve goPredSim and its assessment. M.L. and 
M.H. performed the major part of manuscript writing and figure generation. C.D. implemented the webserver 
allowing GO term predictions using our method through a web interface. T.O. had the initial idea to calcu-
late correlation between sequence and embedding similarity and computed the combination of sequence- and 
embedding-based transfer. B.R. supervised and guided the work over the entire time and proofread the manu-
script. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-020-80786​-0.

Correspondence and requests for materials should be addressed to M.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1007/978-1-59745-535-0_4
https://doi.org/10.1007/978-1-59745-535-0_4
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1038/s41598-020-80786-0
https://doi.org/10.1038/s41598-020-80786-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Embeddings from deep learning transfer GO annotations beyond homology
	GO captures cell function through hierarchical ontologies. 
	Computational methods bridge the sequence-annotation gap. 
	Results and discussion
	Simple embedding-based transfer almost as good as CAFA3 top-10. 
	Embedding-based transfer successfully identified distant relatives. 
	Embedding-based transfer benefited from non-experimental annotations. 
	Improving annotations from 2017 to 2020 increased performance significantly. 
	Performance confirmed by new proteins. 
	Embedding similarity influenced performance. 
	Similar performance for different embeddings. 
	No gain from simple combination of embedding- and sequence-based transfer. 
	Case study: embedding-based annotation transfer for three proteomes. 
	Case study: embedding-based annotation transfer for SARS-CoV-2 proteome. 

	Conclusions
	Methods
	Generating embedding space. 
	Data set. 
	Performance evaluation. 
	Method: annotation transfer through embedding similarity. 
	GO term similarity. 
	Correlation analysis. 
	Availability. 

	References
	Acknowledgements


